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Key Points

e Multi-Level Phenomena exist, and are of significant
Interest to organizational researchers

e Multi-Level Phenomena require Active Multi-Level
Modeling to create good/useful models
— Active Multi-Level Modeling is ABM at multiple levels of

granularity

— A specific sub-family of multi-modeling

e Data-Centric Modeling is key to rapid development of
topical/applied models : data must support instancing at

e1S0S different granularities
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Agent-Based Models and

Emergence
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Parable of the Polygons

(http://ncase.me/polygons/) A swarm of Blue Jack Mackerel form a “bait
— An interactive version of ball’, which confuses predators
the Schelling Model

eAS0S Beautiful elegant useful models with a
®

D single level of agency
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Multi-Level Phenomena

Definition: Phenomena that occur with actors at multiple
levels of granularity

“What if we don't change at all ...

and something magical just happens?” Turnover Organizational Resilience

Change Resistance
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Change Resistance

Definition: Overt or covert resistance
to a introduced organizational change

e Noted Risk Factors:

— Individuals feel they are harmed by
the change

— Individuals don’t understand the need
for the change |

- Organ|zat|0n has gone through "\-\'h‘fz'. if \‘:‘;j.l]llll‘t change at l‘-]{"\
mUIt|p|e Changes |n recent memory and something magical just happens?”

— Organizational culture is not
transparent and trusted

— Organization introduces change poorly
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Definition: The percentage of
workers leaving an organization
over a given unit of time

e Noted Factors:

— QOrganizations that are going
through significant challenges
experience higher turnover

— Individuals which are highly
embedded in the organization are

much less likely to leave

— Organizational socialization
HSOS procedures can reduce chance of
9

iﬁ turnover
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Organizational Resilience

Definition: The ability of an organization to anticipate, prepare for, and
respond to organizational crises

 Noted Factors:
— Groups are resilient if they are more heterogeneous
— Individuals are more resilient if they have resources they need
— Resilience response is shaped by the organization’s ideology
— Organizational guidance which ignores individual practice harms

resilience
RESILIENCE.
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B Multi-Modeling for Multi-Level

Phenomena
e e
Org Model ABM Decision Loop
> Observe
Select
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Legend

Group

Cross

Proposed Framework

Evaluation
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Individual

Productivity
Cycle
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Event Generation

Action

>

Action Selection
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Definitions

Three+ models with intentional inter-operation!
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Evaluate
Performance

Report Task
Results

OrgAhead —

Work Processes

MultiOrg Simulation Cycle

Perceive Alters

Perform
Selected Task

Evaluate Needs

Review Tasks

Act

Choose
Interaction
Partner

Construct —

Socialization Engine

Interact

A

Select Action
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Construct Mechanisms

Construct is a simulation which focuses on interactions
between actors and the diffusion of knowledge between
actors

Construct mechanisms use:
— Agent x Agent: “who knows who?”

— Agent x Knowledge: “who knows what?”
— Agent x Group: “who belongs to what?”

Construct agents socialize 1 to 1 and .
may exchange information about: 7{

— Themselves

— Other agents et Neee® " eariner

Construct —
— Knowledge they have XSocfauzanon Engme/
Interact

Choose
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OrgAhead Mechanisms

OrgAhead is an organization simulation focuses on agents doing
tasks — predicting what tasks the agent should do

OrgAhead agents prioritize doing work they think will be rewarded,
so they need to perceive the priorities of groups to which they
belong:

— Agent x Group — “who belongs to what?”

— Agent x Knowledge — “What can | do?”

— Infers Group x Knowledge — “What does the group I'm part of care about?”

OrgAhead Agents choose and perform —

Results
tasks
OrgAhead —
Work Processes

Perform

Selected Task Evaluate Needs

\ Review Tasks X
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Group Mechanisms

Mutual Learning Simulation
Indoctrination
— Agents are socialized to learn and
prioritize things related to their
groups
— Group priorities can conflict!

Active Organizational Performance:

— The group can:

» Inhibit specific task performance for
all individuals

= Inhibit specific task performance for a
single individual

» Promote specific task performance for
all individuals

» Promote specific task performance for
all individuals.

Evaluate
Performance

e Detach group members

Act
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Data-Centric Modeling

James Hardy/AltoPress/Maxppp
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Informing the Model with Data
e Groups: e Knowledge:
— Structural: Informed via — Word Network (Agent x Word)
Clustering — Words selected by polarization
— Functional: Informed via score
Survey Data
eAS0S
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Horizontal Merger of a

Multinational

Large Multinational, purchased another large company
— Wants to understand the integration process
— Asked academic researchers if they wanted to help

Allowed collection of email-server data for multiple
months at multiple points in time

— Collection Period 1: Right after merger announcement

— Collection Period 2: A year later

— Collection Period 3: Another year later

Encouraged employees to participate in org surveys
administered by research team

June 2016 Copyright © 2016 CASOS, ISR, CMU — Kathleen M. Carley - Director

16



Carnegie Mellon
SorngE
RESEARCH

Internal Email Interaction:

Employees - Colored by Legacy, Sized by Emails Sent and Received (Direct To/From)

\ ‘l( f Ad
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MergedCo = -
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Group Structures via Clustering
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IDENTIFYING KNOWLEDGE
VIA CONTENT PROCESSING
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De-ldentification

e Legal Requirement!

e Used Stanford NER (Named Entity Recognizer) to
iIdentify and then de-identify:
— People
— Locations
— Organizations

June 2016 Copyright © 2016 CASOS, ISR, CMU — Kathleen M. Carley - Director
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Unstructured Content

e First, identify and create anonymous mappings for all NER
tokens

— Replace proper names with tokens:
e “Jean Paul” = “Name_1”"
e “Abe Lincoln” = “Name_2”

— Replace locations with tokens:
e “San Francisco” = “Location_1"
e “New York” = “Location_2"

— Replace organizations with tokens
e “Bank of Omaha” = “Org_1"
e “IKEA” = “Org_2"

e Replace all numeric characters with ‘#
— HHH-HHH-HHEHH

— H#-HHH
— HH M
Q) )
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Using Content as a Proxy for
Knowledge
Every organization has its unique jargon, informed by the
collective backgrounds and contributions of all members.
1. Can we identify words or tokens that are consistently
and regularly associated with LuxuryCo and
StandardCo?
2. Is the overall language of LuxuryCo and StandardCo
becoming more or less similar?
lSl
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Token Score

e For token tof all Tokens T, we have group A, G, and a Prior P

e We have two terms:

— the token’s odds score based on percentage appearance in the A and G’s
documents, but we flatten out marginal cases

— the token’s appearance in A or G (depending on the odds ratio outcome)
subtracted against the percentage appearance of the token in Prior P

S(t) = flattenedOdds(t) * freq(t)

flattenedOdds(t) = abs(odds(t)) > .1, 0dds(t)
else 0

tal  |tpl
1 req(t) = odds(t 20,max<| Al _ P ,O)
|T4l/ |Tg|

ltgl  tpl >
odds(t) < 0, max( — ,0
ITgl  [Tpl
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Example, “relax”

Group A uses “relax”
100 times In a corpus
of 10,000 total word
Instances. Group B
uses it 10 times in a
corpus of 5,000
Instances. The Prior P
has the word 30 times
out of 40,000
Instances.

S(t) = .002775 = .3 *.00925

flattenedOdds(t) = .3 = abs(.3) > .1,.3
else 0

1
odds(t) = 3=[1 — ( 100 ) 0 ) —.5
10000/ 5000

100 30
10000 40000’

freq(t) = .00925 = 3 > 0,max<
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Illustrative Graphic, Late 2013

Standard vs Luxury Co, Late 2013
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Difference Score

We can sum the absolute value of the token scores to
evaluate how different the two groups are in language after
accounting for a prior

Score(T,A,G,P) = z abs(s(t))

t

We normalize this by dividing the found score by an
polarization of the corpus as a whole via multi-sampling.

Numbers range from O to Infinite, where 1 means this is only
as polarized as random (so, not very polarized), while 50
would mean this found is 50x stronger than random.
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Polarization Score

Polarization Over Time

LuxuryCo vs StandardCo - Language Polarization Scores Over Time
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Leveraging Data

Groups from structure
Knowledge from highly polarized words

Research Questions:
1. Are we better able to replicate multi-level phenomena
than single-level models?

1. Can we predict departure from the organization?
2. Can we predict conflict between organizational units?

A
=
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e Multi-Level Phenomena exist, and are of significant
Interest to organizational researchers

e Multi-Level Phenomena require Active Multi-Level
Modeling to create good/useful models

— Active Multi-Level Modeling is ABM at multiple levels of
granularity

— A specific sub-family of multi-modeling

e Data-Centric Modeling is key to rapid development of
topical model : data must support instancing at different

O
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